Tutorial 3

February 9,2017

1. Example 2 on P35: The Plucked String

For a vibrating string with the speed c, consider an infinitely long string which satisfies the wave eqution:

$$
\partial_{t}^{2} u-c \partial_{x}^{2} u=0 \quad-\infty<x<\infty
$$

Soppose that the the initial position is

$$
\phi(x)= \begin{cases}b-\frac{b|x|}{a} & |x|<a \\ 0 & |x|>a\end{cases}
$$

and the initial velocity $\psi(x)=0$ for all x.
The solution of this initial value problem by d'Alembert Formula is

$$
u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]
$$

See the Figure 2 on Page 36.
The effect of the initial position $\phi(x)$ results a pair of travelling waves, one to the left $\frac{1}{2} \phi(x+c t)$ and another to the right $\frac{1}{2} \phi(x-c t)$, at the speed c and with half the original amplitude $\frac{b}{2}$. You can see this phenomenen by the graphs on page 36 clearly.
2. Let $\phi(x)=0$ and $\psi(x)=1$ for $|x|<a$ and $\psi(x)=0$ for $|x| \geq a$. Sketch the string profile at each of the successive instants $t=\frac{a}{2 c}, \frac{a}{c}, \frac{3 a}{2 c}, \frac{2 a}{c}, \frac{5 a}{c}$.
Solution: By d'Alembert's formula, the solution is

$$
u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s=\frac{1}{2 c}[\text { length of }(x-c t, x+c t) \cap(-a, a)] .
$$

So we have

$$
\begin{aligned}
& u(x, a / 2 c)=\left\{\begin{array}{ll}
0 & x \in\left(-\infty,-\frac{3 a}{2}\right] \cup\left[\frac{3 a}{2}, \infty\right) ; \\
\frac{1}{2 c}\left(\frac{3 a}{2}-x\right) & x \in\left[\frac{a}{2}, \frac{3 a}{2}\right] ; \\
\frac{a}{2 c} & x \in\left[-\frac{a}{2}, \frac{a}{2}\right] ; \\
\frac{1}{2 c}\left(\frac{3 a}{2}+x\right) & x \in\left[-\frac{3 a}{2},-\frac{a}{2}\right] ; \\
u(x, 3 a / 2 c)=\left\{\begin{array}{ll}
0 & x \in\left(-\infty,-\frac{5 a}{2}\right] \cup\left[\frac{5 a}{2}, \infty\right) ; \\
\frac{1}{2 c}\left(\frac{5 a}{2}-x\right) & x \in\left[\frac{a}{2}, \frac{5 a}{2}\right] ; \\
\frac{a}{c} & x \in\left[-\frac{a}{2}, \frac{a}{2}\right] ; \\
\frac{1}{2 c}\left(\frac{5 a}{2}+x\right) & x \in\left[-\frac{5 a}{2},-\frac{a}{2}\right] ;
\end{array} \quad u(x, a / c)= \begin{cases}0 & x \in[0,2 a] ; \\
\frac{1}{2 c}(2 a-x) \\
\frac{1}{2 c}(2 a+x) & x \in[-2 a, 0] ;\end{cases} \right. \\
u(x, 2 a / c)= \begin{cases}0 & x \in(-\infty,-3 a] \cup[3 a, o \\
\frac{1}{2 c}(3 a-x) & x \in[a, 3 a] ; \\
\frac{a}{c} & x \in[-a, a] ; \\
\frac{1}{2 c}(3 a+x) & x \in[-3 a,-a] ;\end{cases}
\end{array}>=\begin{array}{ll}
0
\end{array}\right.
\end{aligned}
$$

$$
u(x, 5 a / c)= \begin{cases}0 & x \in(-\infty,-6 a] \cup[6 a, \infty) \\ \frac{1}{2 c}(6 a-x) & x \in[4 a, 6 a] \\ \frac{a}{c} & x \in[-4 a, 4 a] \\ \frac{1}{2 c}(6 a+x) & x \in[-6 a,-4 a]\end{cases}
$$

Here we omit the figures.

3. Stability for diffusion equation by maximum principle

Thoerem: Soppose $u_{i}(x, t), i=1,2$ are solutions of the following Initial-Boundary-Value-Problem:

$$
\begin{aligned}
& \partial_{t} u=k \partial_{x}^{2} u \quad 0 \leq x \leq l, 0 \leq t \leq T \\
& u(x, t=0)=\phi_{i}(x) \quad 0 \leq x \leq l \\
& u(x=0, t)=g_{i}(t), u(x=l, t)=h_{i}(t) \quad 0 \leq t \leq T
\end{aligned}
$$

Then

$$
\max _{R}\left|u_{1}(x, t)-u_{2}(x, t)\right| \leq \max \left\{\max _{0 \leq x \leq l}\left|\phi_{1}(x)-\phi_{2}(x)\right|, \max _{0 \leq t \leq T}\left|g_{1}(t)-g_{2}(t)\right|, \max _{0 \leq t \leq T}\left|h_{1}(t)-h_{2}(t)\right|\right\}
$$

Proof: Set $v(x, t)=u_{1}(x, t)-u_{2}(x, t)$, the v satisfys

$$
\begin{gathered}
\partial_{t} v(x, t)=k \partial_{x}^{2} v(x, t) \\
v(x, t=0)=\phi_{1}(x)-\phi_{2}(x) \\
v(x=0, t)=g_{1}(t)-g_{2}(t), v(x=l, t)=h_{1}(t)-h_{2}(t)
\end{gathered}
$$

Apply Maximum Principle to v, we have for any $0<x<l, 0<t<T$

$$
\begin{aligned}
v(x, t) & \leq \max _{\partial_{p} R} v(x, t)=\max \left\{\max _{0 \leq x \leq l} \phi_{1}(x)-\phi_{2}(x), \max _{0 \leq t \leq T} g_{1}(t)-g_{2}(t), \max _{0 \leq t \leq T} h_{1}(t)-h_{2}(t)\right\} \\
& \leq \max \left\{\max _{0 \leq x \leq l}\left|\phi_{1}(x)-\phi_{2}(x)\right|, \max _{0 \leq t \leq T}\left|g_{1}(t)-g_{2}(t)\right|, \max _{0 \leq t \leq T}\left|h_{1}(t)-h_{2}(t)\right|\right\}
\end{aligned}
$$

Apply Minimum Principle to v, we have for any $0<x<l, 0<t<T$

$$
v(x, t) \geq \min _{\partial_{p} R} v(x, t)=\min \left\{\min _{0 \leq x \leq l} \phi_{1}(x)-\phi_{2}(x), \min _{0 \leq t \leq T} g_{1}(t)-g_{2}(t), \min _{0 \leq t \leq T} h_{1}(t)-h_{2}(t)\right\}
$$

Then

$$
\begin{aligned}
-v(x, t) & \leq \max \left\{\max _{0 \leq x \leq l} \phi_{2}(x)-\phi_{1}(x), \max _{0 \leq t \leq T} g_{2}(t)-g_{1}(t), \max _{0 \leq t \leq T} h_{2}(t)-h_{1}(t)\right\} \\
& \leq \max \left\{\max _{0 \leq x \leq l}\left|\phi_{1}(x)-\phi_{2}(x)\right|, \max _{0 \leq t \leq T}\left|g_{1}(t)-g_{2}(t)\right|, \max _{0 \leq t \leq T}\left|h_{1}(t)-h_{2}(t)\right|\right\}
\end{aligned}
$$

Hence

$$
\max _{R}|v(x, t)| \leq \max \left\{\max _{0 \leq x \leq l}\left|\phi_{1}(x)-\phi_{2}(x)\right|, \max _{0 \leq t \leq T}\left|g_{1}(t)-g_{2}(t)\right|, \max _{0 \leq t \leq T}\left|h_{1}(t)-h_{2}(t)\right|\right\}
$$

4. Prove the uniqueness of solution to

$$
\begin{aligned}
& \partial_{t} u=k \partial_{x}^{2} u \quad 0 \leq x \leq l, 0 \leq t \\
& u(x, t=0)=\phi(x) \\
& \partial_{x} u(x=0, t)=g(t), \partial_{x} u(x=l, t)=h(t)
\end{aligned}
$$

by energy method.

Proof: Suppose u_{1} and u_{2} are two solutions of the above problem, then $v=u_{1}-u_{2}$ satisfies

$$
\begin{aligned}
& \partial_{t} v=k \partial_{x}^{2} v \quad 0 \leq x \leq l, 0 \leq t \\
& v(x, t=0)=0 \\
& \partial_{x} v(x=0, t)=0, \partial_{x} v(x=l, t)=0
\end{aligned}
$$

Multiplying $\partial_{t} v=k \partial_{x}^{2} v$ by v and then integrating w.r.t x give that

$$
\frac{d}{d t} \int_{0}^{l} \frac{1}{2}|v|^{2} d x=\int_{0}^{l} k \partial_{x}^{2} v v d x
$$

It follows from integration by parts and boundary conditions that

$$
\frac{d}{d t} \int_{0}^{l} \frac{1}{2}|v|^{2} d x=\left.k \partial_{x} v v\right|_{0} ^{l}-\int_{0}^{l} k\left(\partial_{x} v\right)^{2} d x=-\int_{0}^{l} k\left(\partial_{x} v\right)^{2} d x \leq 0
$$

for any $t \geq 0$. Then for any $t \geq 0$

$$
\int_{0}^{l} \frac{1}{2}|v|^{2} d x \leq \int_{0}^{l} \frac{1}{2}|v(x, 0)|^{2} d x=0
$$

due to the initial condition. Hence $v \equiv 0$ for any $0 \leq x \leq l, t \geq 0$ which completes the proof of the uniqueness.

